
FactorPrism: Basis Pursuit for Impact Decomposition and Cause
Localization and Quantification within Feature Hierarchies

David Rimshnick

Abstract

Growth decomposition, that is to say, the post-facto allocation of
causal impacts to feature categories, is a fundamental and ubiquitous
task in analytics and business intelligence, but there are few formal
approaches or automated techniques. In this paper, we show that
the common informal approach can be viewed as a greedy allocation
of multipliers over hierarchal categories of item features, and thus
is an extension of multiplicative decomposition from the time series
literature. We then show that this algorithm is generally suboptimal in
an l1 sense, and that we can use the compressed sensing technique of
basis pursuit to optimize against this norm. We demonstrate that this
technique yields more convincing results, on toy, simulated, and real-
world datasets. Specifically, our analysis suggests this technique is 2-3
times more accurate in isolating and quantifying causal impacts than
the default approach. We discuss applications in sales and operations
analytics, and link to our freely-available software implementing this
algorithm.

1 Introduction

Perhaps the most fundamental question of business analytics,
for instance when referring to a new and/or unexpected growth
pattern in sales data, is "what is going on?". This question then
can be more precisely framed as "what are the main drivers of
this growth (positive or negative), and what is their contribu-
tion?". In practice, one is often concerned with understanding
the root causes of an item’s growth at various hierarchical cate-
gories, for instance how much a given product’s +15% growth in
a quarter is driven by market-category versus group-category
versus product-category factors.

Moreover, growth causes often operate along independent
hierarchies which may intersect. For example, there may be ge-
ographic impacts at the nation or state category, which impact
either all or just specific groups of products.
Without having nuanced and case-specific data, it is often

difficult to perform causal inference to ascribe impact to individ-
ual drivers of behavior. We can, however, attempt to attribute
the total impact of these drivers at the category at which they
operate based on the feature and performance data alone. For
instance, we can seek to attribute the total impact of market-
category factors versus state-category factors, etc.

Although this may sound abstruse, in reality this attribution
is done pervasively and subconsciously. If a product’s volume

grows 15% in a given quarter and total market volume grows
only 10%, we almost reflexively say that 10% of the product’s
growth is due to market volume drivers, and the remaining 5%
is due to the specific product.
The implicit potential error with this approach (which we

will show generalizes to a greedy "top-down" algorithm over the
feature hierarchy) may already be obvious from this example -
that because the product is itself part of the market, we may be
over-ascribing growth to the market which should be ascribed
to the product.
In fact, we will show that this dilemma illustrates the fact

that in attributing this growth we are implicitly dealing with
an underdetermined system of equations, and there is a more
plausible solution to this system than the one generated by
the greedy approach - specifically the one minimizing the l1
norm. In fact, this construction is an instance of the compressed
sensing technique basis pursuit.
Besides our intuition that this solution is more plausible by

the Occam’s Razor logic implicit in the l1 norm, specifically
that this represents the solution with the smallest set of causes
to generate the result (in a sense we will expound), we will
also show in simulation and empirically that this approach is
superior, as it is able to better isolate "known" causal impacts.
Upon completion, our analysis yields two major types of

results: (1) a quantification and ranking of the growth impact
at each category, and, relatedly, (2) the decomposition of any
given segment’s growth vis a vis the impacts at each category.
This allows the user to read-off the most important categories of
impact either overall or to a specific item, and therefore target
further investigation or exploratory analysis.

An implementation of this algorithm is available in the epony-
mous software package FactorPrism, maintained by the au-
thors and available for free through the Windows Store (see
https://www.microsoft.com/en-us/p/Fact
orPrism/9nt1961v0n7g).

2 Related Work

The time-series literature, specifically within forecasting, has
typically viewed two considerations - viewing a trend as a prod-
uct of multiple factors, and aggregating effects from hierarchies
or groups - as separate concerns [11]. Typical applications have
been in signal decomposition of additive features [4, 6, 19, 23].
Recent work has investigated trend decomposition based on

1

https://www.microsoft.com/en-us/p/FactorPrism/9nt1961v0n7g
https://www.microsoft.com/en-us/p/FactorPrism/9nt1961v0n7g

3 MOTIVATION

additive features combined with feature reduction [1]. Other
recent work has explored the application to network recon-
struction vis à vis time series, again in an additive sense [13].

In the case of multiplicative decomposition, the first typically
involves decomposing a given data unit Yt into the factors

Yt = Tt ×Rt (1)

where Tt is a trend/seasonality factor, and Rt is a remainder
component. (Tt could also be decomposed into separate trend
and seasonality). Tt would be estimated by one of a number
of decomposition methods, and then Rt would simply be the
remaining factor [7, 22].
In parallel, the hierarchies of data categories have been

treated through additive aggregation and disaggregation - for
example, at any time t, the value of a forecast with data com-
ponents A and B and with subcomponents AA, AB for A and
BA, BB for B. See Figure 1.

R

A

AA AB

B

BA BB

Figure 1: Example tree representing hierarchies of feature cate-
gories

This would be decomposed as

YA,t = YAA,t + YAB,t (2)

YB,t = YBA,t + YBB,t (3)
and

YRoot,t = YAA,t + YAB,t + YBA,t + YBB,t =

YA,t + YB,t (4)

The overall forecast would be built by either aggregation, dis-
aggregation, or a combination of both of forecasts at various
categories.
The combined approach, which is our apparently novel for-

mulation, would be defined as, for example for data unit AA

YAA,t = fAA,0 × fAA,t × fA,t × fRoot,t (5)

where fAA,0 is the initial value of the data unit to which the
growth will be compared.

This problem can be considered related to a type of multilevel
causal inference modeling (as in e.g. [9]), but degenerate (due
to n > p) and applied to multiplicative space.

3 Motivation
We begin with definitions and simple motivating examples for
our framework and assignment algorithm to develop intuition.
We then develop an optimization problem that we posit recovers
the intuitively correct factors.

3.1 Inputs and Definitions

The input to the algorithm is the following:

• A series of datapoints with a number of features, at least
one of which being a time dimension. Without loss of
generality, the data is aggregated to the level of these fea-
tures (if this is not done, the preprocessor would perform
this task.) These data should be non-negative, real-valued
quantities so that values can be aggregated. Typical exam-
ples include number of units sold, sales dollars, or number
of transactions.

• An ordering of those input features (other than the time fea-
tures) among separate hierarchies. For instance, there may
be a "Product Feature" hierarchy, which includes [Product
Type], [Product Subtype], [Item] in that (descending) or-
der of scope, as well as a "Customer-Geography Feature"
hierarchy, which includes the features [Region], [State],
[County], and [City].

The algorithm preprocessor creates a directed-acyclic-graph
(DAG) of all data points by inducing the hierarchies of their
feature categories. You can imagine, if there is only a single
hierarchy, such as "Product Characteristics", then this DAG is
a tree. (It is helpful to think of the DAG as a tree because it
functions in many ways similar to one, although when there are
different hierarchies, the graph ends up being a cross-product
of different trees, so that each node can have multiple parents,
so that it is in fact technically a lattice.) Going forward, we will
call these DAGs fDags.
Each unique combination of feature settings (or lack of set-

ting) defines a unique category, corresponding to a node on our
fDag. Importantly, there is a category where no feature is set,
known as the Overall Category. Note that each category other
than the Overall Category has at least one ancestor parent, or
node prior to it in the fDag.
Each input data point corresponds to a terminal node (or

leaf) of the fDag, which we will define as a microcategory.
Inherently our model assumes that there is an unobserved

set of causes Hi within and influencing each category i. Our
algorithm seeks to recover the total multiplicative factor fi ≈∑

Hi of each category i, where fi influences all data in i.
Importantly, note that the data in a given category i can

be influenced by other causes beyond just Hi. For instance,
suppose we were working with data from a retailer selling,
among other things, sports equipment. The data related to
Baseball Gloves would be influenced by the causes within Sports
Equipment as well as the causes within Baseball Gloves (among
others). Correspondingly, some of the data for Baseball Gloves
would be influenced by other "below" factors, such as those
related to a particular model of glove, as well as "adjacent"
factors, like those related to particular geographic states.
Note that the microcategories themselves also have factors.

The default and null solution to our problem is that, at each time
step, the microcategory factors contain all the multiplicative
value and the other factors are all equal to 1. (This will be
referred to as the "Bottom-up" solution in Section 4.3.)

2

3.2 Assignment Motivation 3 MOTIVATION

To extend our example from above, consider if we only had
one hierarchy, "Product Characteristics". The categories would
include those in Table 1.

Table 1: Example categories within a "Product Characteristic"
hierarchy (Labels abbreviated for space as shown).

(Overall category)
Sports Equipment (SE)
Books
. . .
SE : Baseball Equipment (BE)
SE : Football Equipment (FE)
. . .
SE : BE : Baseball Gloves (BG)
SE : BE : BG : Wilson Model X

The last entry in Table 1 is our microcategory, and the cate-
gory to which the input data would be aggregated. If we had
a second hierarchy, "Adult/Child", then the microcategories
would be twice as many (one for Adult and one for Child), and
generally there would be two additional sets of categories, one
for Adult and one for Child (in addition to the one including
both adults and children, which would be the categories above
(without this feature), in which case we would consider the
feature "Open").

3.2 Assignment Motivation
We seek to create an algorithm to assign multiplicative fac-
tors to various feature-settings in the hierarchy in the most
parsimonious way possible. As perhaps the simplest possible
example, suppose we had two items of equal weight, A and B.
We illustrate our approach for perhaps the two most simple
scenarios: (1) both A and B double between times t0 and t, and
(2) A doubles but B remains constant.

We begin with scenario (1), as illustrated in Figure 2. Since
the system is underdetermined, we can assign the multiplicative
factor in an infinite number of ways. In Figure 2, we show the
two perhaps most obvious ways: Applying all the multiplicative
weight to the item themselves ("Bottom-up"), or all the weight
to the root ("Top-down"), as well as an arbitrary other way,
attributing the factor "equally" between the root node and the
leaves. (We will expand in Section 4.3 on why we can think of
these as "Bottom-up" and "Top-down" approaches respectively.)
Unfortunately, similar to the case in causal inference, we

don’t have a "truth set" for the correct factor assignments. Al-
ternatively, we follow the intuitions of compressed sensing and
assume that the simplest (i.e. most parsimonious, natural, or
"Occum’s Razor") solution is desired. Clearly, the "Top-down"
approach here best fits our intuition of the simplest solution,
as it is more likely there was a single doubling that accounted
for the overall doubling, rather than two "separate" doublings,
or something in between.
Consider now the second scenario, as illustrated in Figure

3. Here, contrary to the first scenario, the more compelling
attribution is the "Bottom-up" assignment, as, in particular, the
"Top-down" implies that item B had item-category impacts of

1

2

2

2

2

(a) "Bottom-up"

2

1

2

1

2

(b) "Top-down"
√
2

√
2

2

√
2

2

(c) Arbitrary

Figure 2: Example multiplicative factor assignments constitut-
ing scenario (1), a doubling over two categories of equal weight.
(Total microcategory impact shown in red box.)

1

2

2

1

1

(a) "Bottom-up"

3/2

4/3

2

2/3

1

(b) "Top-down"

Figure 3: Example multiplicative factor assignments constitut-
ing scenario (2), where only category A (left leaf) doubles.

2/3, which counteracted the overall increase of 3/2 such that
overall its volume remained constant. Clearly this seems less
plausible than the impacts being isolated to item A.

We can see that, for scenario (1), our preferred solution also
has the lowest joint product between the factors (the product is
2, as opposed to 4 and 2

√
2 for the other solutions shown). We

might think this is the objective then - minimizing the product
- but we can see that we can make the product arbitrarily small
by letting the leaf factors go below 1. In fact, this is bourne out
by scenario (2), where the "Top-down" approach has a lower
joint product (4/3 vs 2). So instead of minimizing the product
of the factors directly, we instead want to minimize the product
of the factors "multiplicative distance from 1" in some sense.

To codify this concept, we define the function

Z(x) = max(x, 1/x) (6)

as Geometric Absolute Value (analogous to traditional absolute
value being the additive distance from 0 to x, this is the geo-
metric distance from 1 to x). (This can be thought of as a trans-
formation of traditional absolute value to exponential space
[16].)

Thus, our objective then becomes minimizing

ω =
∏

Z(F) (7)

with F corresponding to the set of category-level factors.

3

3.3 Sparsity 4 OPTIMIZATION

3.3 Sparsity

In the prior section, we did not acknowledge that there is an-
other obvious potential objective, which happens to also lead
to the correct solution for both of our toy examples. Namely,
we could have looked for the solution with the highest degree
of sparsity (in this case referring to the number of factors not
equal to 1).
However, a quick counterexample demonstrates that the

sparsest solution is clearly not desirable. Consider the example
in Figure 4, with four equally sized categories.

1

2

2

2

2

1/2

1/2

1/2

1/2

(a) Bottom-up (ω = 16)

5/4

8/5

2

8/5

2

2/5

1/2

2/5

1/2

(b) Top-down (ω = 20)

2

1

2

1

2

1/4

1/2

1/4

1/2

(c) "Sparser" sol. 1 (ω = 32)

1/2

4

2

4

2

1

1/2

1

1/2

(d) "Sparser" sol. 2 (ω = 32)

Figure 4: Example showing how sparsity objective fails to re-
cover desirable solution. Value in parenthesis indicates value
of objective from Equation 7.

The "Sparser" solutions, despite having fewer non-one factors
(3 versus 4 or 5), clearly are not preferable. The most clear
argument is that, by symmetry, there is no reason why one of
these should be preferred over the other. Intuitively, we are
adding another sort of complexity besides the raw cardinality
of factors, and in fact their magnitude matters. This is why our
objective from Equation 7, which captures the magnitude of the
impacts as opposed to their raw counts, yields the intuitively
correct solution (in this case, (a), the "Bottom-up" solution.)

4 Optimization

4.1 Equally-weighted Case

We start by writing down the functional form to maximize in
our simple case where all microcategory factors have equal
weight; i.e. the microcategories they represent start from equal
size. We will then move to the more general case where these
categories have differing starting sizes.

Let S be our set of categories, and M be our set of microcate-
gories.
In the case where all microcategory data Yi,0 are equal, we

seek to find the set of multiplicative factors optimizing

minimize
∏
i∈S

Z(fi)

subject to Yj,0

∏
i∈Sj

fi = Yj,t, j ∈ M

fi > 0, i ∈ S

(8)

where Z() is again our Geometric Absolute Value as defined in
Equation 6, Yj,t is the data value corresponding to microcate-
gory j at time t, fi is the factor attributed to category i, and
Sj are the set of ancestors of any microcategory j (including j
itself).

We can see that if we set gi = log fi, our problem is equiva-
lent to

minimize
∑
i∈S

|gi|

subject to
∑
i∈Sj

gi = log Yj,t − log Yj,0, j ∈ M
(9)

and we are back to traditional additive form, albeit with the
objective being a sum of absolute values.
We thus realize we are finding the feasible solution g∗ with

the smallest L1 norm (Manhattan distance) to the origin gi = 0
∀i. Thus this problem is an instance of the basis pursuit problem
[5] and thus is fundamentally related to compressed sensing [8].
(The reader can verify that the motivating problems of Sec-

tion 3.2 are solved to our desired solutions if solved in this LP
form.)
It is perhaps interesting to note that basis pursuit was first

applied to compressed sensing as a relaxation to minimizing the
l0 norm, where sparsity was desired [3]. The authors showed
that under certain assumptions, the l1 norm would recover
the sparsest and thus desired solution. From the argument of
Section 3.3, clearly these assumptions do not hold in our case,
and yet the l1 norm still recovers our desired solution.

4.2 Weighted Case
In the more general and realistic case where Yi, 0 are not equal,
we adapt equation 9 to

minimize
∑
i∈S

Wi|gi|

subject to
∑
i∈Sj

gi = log Yj,t − log Yj,0, j ∈ M
(10)

whereWi, the category weighting factor, is defined as the max-
imum of all microcategories’ data Yj,0 where i influences j, i.e.
i ∈ Sj ,

Wi = max
j∈Qi

Yj,0 (11)

where
Qi = {j s.t. i ∈ Sj} (12)

Let us briefly justify why the maximum of influenced micro-
category weights is chosen as our weighting factor as opposed

4

4.3 Greedy Assignments 4 OPTIMIZATION

to the sum. First, it should be obvious that, if the sum is cho-
sen, then our weighted case does not generalize our equally-
weighted case. In the simplest example, a single overall parent
with two microcategories, where both microcategories had
equal weight, the parent factor weight would be twice that of
its children. Our equally-weighted case has them equal.

On the other hand, choosing the maximum clearly maintains
this generalization. Intuitively the reason for choosing the
maximum can be understood with the following argument: if
the weight of a parent category was ever less than the max
of its microcategories, then it may be possible to "artificially"
increase the parent category’s factor beyond its correct value
(instead of increasing the value of the correct category’s), as the
"correction penalty" that would be incurred (in having to adjust
down the other microcategories) could be worth the increase.
On the other hand, setting the weight above the maximum
would unnecessarily penalize attribution to the parent category
and thus work against the spirit of the allocation.
See the Appendix Section A for a slightly more thorough

justification.

4.3 Greedy Assignments
Before moving on to our final formulation, let us briefly ad-
dress other approaches to serve as our reference points. The
"Bottom-up" and "Top-down" assignments of Section 3.2 were
toy implementations of two natural greedy algorithms to assign
these factors. The terms "Bottom-up" and "Top-down" refer to
the way the factors are assigned to the fDag.
Specifically, we recall that our factors must satisfy the fol-

lowing constraints (in the multiplicative form):

Yj,0

∏
i∈Sj

fi = Yj,t, j ∈ M (13)

We can imagine traversing the fDag greedily assigning fac-
tors, with the remaining factors having to satisfy the remainder.
If we start at the microcategories (or leaf nodes of the fDag as it
were), we arrive at a degenerate solution where all multiplica-
tive weight is assigned to the microcategories themselves, and
the rest are 1 (or 0 in the log form), i.e.

fi = Yi,t/Yi,0, i ∈ M

fi = 1, i ∈ S −M
(14)

Since we started the transversal at the "bottom" of the fDag, we
refer to this as the "Bottom-up" approach, and it represents our
null solution.
The more interesting transversal is the "Top-down", where

we start with the "Overall" category (or root node) and assign
weights iteratively. (We note that since our structure is a DAG,
there exists a topological ordering, so this is possible.) Our
assignment becomes

fi =
Yi,t/Yi,0∏
j∈(Si−i) fj

, i ∈ S (15)

so that the factor for each category is simply its own data’s
growth modulo the product of its ancestors’ factors.

We note that this approach is suboptimal for the reason al-
luded to in the Introduction, namely that because the data for
each subcategory is also part of its ancestors, we may assign
impact at a higher category that truly occurs at a more gran-
ular category. (Hence it was not our preferred solution in the
second scenario in Section 3.2, and will again be shown to be
unsatisfactory in Section 5.2.)

Although in just now referring to the Introduction, we are im-
plying that the "Top-down" approach is the standard approach
to this problem, this is overly generous. In fact anything like a
standard is really a degenerate hybrid of the "Top-down" and
"Bottom-up" approach, where overall impact is first calculated,
and the remainder is allocated to the microcategories. (In other
words, any "intermediate" categories are ignored.) An example
of this principle taken for granted is in the Capital Asset Pricing
Model (CAPM), where there is simply an overall "market-risk
premium" and an "equity-risk" premium calculated, with no
other intermediate category [17].

4.4 Ultimate Formulation
The equally-weighted case, as mentioned, is an instance of the
basis pursuit problem, and thus can be solved as an efficient
linear program (LP), with much research on the most efficient
algorithm to do so [2, 5, 12].

The weighted case can also be solved as an LP, which consti-
tutes our ultimate model formulation, namely

minimize
∑
i∈S

Witi

subject to
∑
i∈Sj

gi = log Yj,t − log Yj,0, j ∈ M

ti ≥ gi, i ∈ S

ti ≥ −gi, i ∈ S

(16)

where ti are dummy variables to force Wi|gi| to minimized.
(The reader will note that this LP is guaranteed to be feasible,

as the "Bottom-up" solution, where the microcategories contain
all the multiplicative value, is always available.)
Any standard LP system (as in [14]) should be suitable for

solving instances of this model; for instance the primal-dual
interior point method implemented by Google’s Glop solver has
worked satisfactorily in the authors’ experience.

4.5 Descriptive Analysis
Given we have solved for the factors above, we are prepared to
answer, for any given category C of the data, "which factors
have the largest impact on C?". We note that, when C is the
Overall Category, our question becomes "which factors have
the largest impact overall?".
To compute the aggregate impact pi of any category i’s

causes, we use the formula

pi = (fi − 1) ∗
∏

j∈(Si−i−C)

fj ∗ fC ∗ Yi,0 (17)

again where Si is the set of ancestors of i (including itself).

5

4.6 Static Decomposition 5 EMPIRICAL RESULTS

More generally, the unit impact pC,i of a category i’s factor fi
on a given category C’s data is given by the following relation:

pC,i = (fi − 1) ∗
∏

j∈(Si−i−C)

fj ∗ fC ∗ (YC,0 ∩ Yi,0) (18)

where YC,0 ∩ Yi,0 is shorthand for the number of units in C
that are also a member of i (in time 0). pC,i can then usefully
be expressed as a percentage of C’s total growth

∑
i pC,i.

4.6 Static Decomposition

We note that, up to this point and in this section, our discus-
sion has been regarding the change between two time periods,
namely t0 and tt (abbreviated by their subscripts). However,
if we are dealing with multiple time steps, the algorithm can
simply be repeated for each any time period tk relative to t0,
and then the results aggregated (for instance, to compute a "net
impact").

Instead of decomposing causes in time, however, FactorPrism
can also be used to decompose a static set of members. In effect,
instead of answering the question "What is the aggregate impact
of each category on growth from t0 to ti?", we ask "What is
the disproportionate aggregate multiplicative contribution of
causes in each category to a given member’s size?".

For illustration, suppose one were decomposing medical case
costs in a given year. "Orthopedic" cases might be twice the
average case cost, while "Surgeries" would be five times the
average cost. However, "Orthopedic Surgeries" might have
30x the average case cost, in which case the fi, in this case
understood as the disproportionality factor of i, would be 3,
since "Orthopedic Surgeries" were expected to only have 10x
the cost of an average case (2x from being in "Orthopedics", and
5x from being a surgery).
To modify our model for this case, we simply let D0 = 1

and change our weighting factors W0 (from Equation 10) to be
dependent onDi instead ofD0. (The choosing ofD0 = 1might
seem arbitrary, but any scale of this would be absorbed in the
"Overall" factor by the LP construction. So the only correction
that needs to be made is adjusting the "Overall" segment impact
so that total impacts sum to unity.)

4.7 Implementation Considerations

In practice, certain implementation details must be considered.
One such detail as how to handle "new" categories (i.e. that
were not around at t0, in which case their factor multiplier
would be undefined). For our purposes, we are still interested
in the unit impact of these "new" categories even if their factors
are undefined. Thus a workaround for our intentions is to set
the zero values to some small value ϵ. The multipliers for this
category can then be "re-scaled" for output/display purposes
to some convention (e.g. that the first multiplier should be
+100%). In this case, this category’s attributed unit variance is
still captured correctly (as well as multiplier factors beyond the
first, relative to the first).
We also note that in the log form f = 0 factors are not

allowed. If any categories have Yt = 0 data in any time period,

we can assign the f = 0 in the "Top-down" manner described
in Section 4.3, with the top-most 0 category i having fi = 0
and descending categories j having fj = 1. We then exclude
all i’s microcategory descendants from M in the log form.

Other considerations may include "pruning" the fDags so that
microcategories have a minimum size, as well as normalizing
data magnitudes for solver tolerance purposes, etc. The user
should implement as contextually appropriate.

5 Empirical Results

5.1 Simulation Results
In this section, we will demonstrate simulation results confirm-
ing massive increases in accuracy with the FactorPrism algo-
rithm over greedy approaches. In particular, we will show that,
when randomly-sized causes are "placed" at random categories,
FactorPrism is nearly perfect at recovering the impacts at each
category, while greedy approaches are hugely inaccurate.

For our simulation, we imagine a feature set with two hierar-
chies, "HierA" and "HierB". Moreover, each hierarchy has two
features, {[A], [AA]} and {[B], [BB]}, respectively. Finally, we
test two scenarios: one in which each feature has 2 settings (e.g.
"AA1" and "AA2", "BB1" and "BB2") versus one in which each
level has 3 settings. For the 2-setting scenario, this results in 49
distinct categories, and for the 3-setting scenario, this results
in 169 distinct categories.

As alluded, we run a simulation to test the effectiveness of the
FactorPrism algorithm to correctly attribute the causal impact
in one time period of randomly placed causes among these
categories. We start by assigning each microcategory a starting
value in N(10000, 2000). For our impact period, we assign
random noise in N(0, .001) to the starting data. Then, we test
scenarios where we place 1,3, or 5 causes in random category(s).
The causes have an effect size in N(0, 0.05).

We tested 1000 runs for each configuration, and measured
the accuracy of FactorPrism is attributing to correct causal
impact to each categories versus the greedy "Top-Down" and
"Bottom-Up" approaches.
To measure the accuracy of the allocation, we look at the

portion of impact that is allocated in the right direction at each
categories. We use the following formula for the accuracy P :

P =

∑
C∈Cats min(|AC |, |EC |D)∑

C∈Cats |AC |
(19)

where AC is the actual impact in category C , EC is the al-
gorithm estimated attribution to that level, and |EC |D is the
absolute estimated attribution in the same direction as the ac-
tual impact.
Table 2 summarizes the results over the iterations. As is

clear, FactorPrism is 2-3 times more accurate than the greedy
approaches, showing near-perfect accuracy in recovering the
correct causal attributions, while the alternative methods are
quite deficient. In particular, this analysis somewhat suggests
the lift increases with situational complexity, as in the 5-cause
3-setting scenario FactorPrism recovers the category impact
almost perfectly. This suggests that the results will be even
more accurate in real-life scale.

6

5.2 Real World Example: NYC 311 Data 6 CONCLUSION

Table 2: Simulation results comparing the impact attribution to
categories between FactorPrism and greedy approaches.

method
Causes Settings FP TopDown BottomUp
1 2 93.5% 34.8% 32.3%

3 92.4% 44.7% 42.4%
1 Total 92.9% 39.9% 37.4%
3 2 88.8% 37.7% 27.1%

3 94.5% 50.7% 24.5%
3 Total 91.3% 43.3% 26.0%
5 2 78.1% 42.2% 20.1%

3 97.4% 53.0% 22.3%
5 Total 86.5% 46.9% 21.1%
Overall Total 90.1% 43.5% 27.7%

5.2 Real World Example: NYC 311 Data

We begin this section by noting that ideally we would look to
demonstrate the value of this algorithm by using a company’s
sales data, as this is perhaps the most compelling and immediate
use case (hence our hitherto examples referring to retail sales).
However, company’s rarely share their transactional data, and
in the limited public resources identified by the authors, there
was not adequate item and customer information to apply the
approach in a meaningful way.
Nonetheless, as we will again mention, operational statis-

tics are another potentially fruitful application. Fortunately,
public operations data seems more generally available. A
concrete example is the "NYC Open Data" project (https:
//opendata.cityofnewyork.us/), which hosts a
large number of datasets around city operations and concerns.
In particular, NYC shares data about utilization of its "311" ser-
vice. (As described by their website, "311 is New York City’s
non-emergency call center that allows residents to make service
requests, file complaints, and get additional information about
the City" [15].)
We posit this data is a strong candidate for our approach,

specifically in mining for patterns in the types of complaints
made to the system. Usefully, each call listed as a transaction,
along with a number of descriptive features. For the sake of
simplicity, we will focus on a single hierarchy of these features
(which we will call "Complaint Information"). There are two
features relevant to this hierarchy in the data: the broader
[Complaint Type] feature, and the more granular [Descriptor]
feature.
Data from January 2010 to April 2017 was accessed. After

aggregating the data to monthly totals, it seemed worth inves-
tigating the trend between September 2013 and March of 2017,
as there is a clear increase over this period (see Figure 5.) In
fact, usage was 38.3% higher than the September 2013 level
during this period. We then decomposed this 38.3% growth in
this period vis a vis the "Complaint Information" features using
our approach (which we will abbreviate to BP, for Basis Pursuit)
versus the "Top-down" method (TD).

The results from the two approaches were notably and
tellingly different. Although there is obviously much to com-
pare, we will highlight two representative differences. The first,
and ultimately most damning, difference between the results of
the approaches is in the attribution of effect on overall growth

Figure 5: Aggregate monthly calls to the 311 service center,
January 2010-April 2017. Time period investigated shaded in
blue.

to the Overall Category, as shown in 3. By construction, the
TD approach attributes all of the net growth in the time period
to its own factor. All other factors then must net out to zero
impact. Our approach allocates only a much more realistic 6.4%
growth to the Overall factor, with the remainder of the net
impact attributed to factors from other categories.

Table 3: Growth decomposition between Overall Category and
others for the "Top-down" (TD) versus the current approach
(BP).

TD BP
Overall Category 38.3% 6.4%
All Other 0.0% 31.9%

The downstream impact of this over-generalization is evident
in the greedy method’s inability to "find" important underlying
impacts, one of which is the second difference we will highlight.
In particular, we investigate the attribution of impact to service
requests for Street Condition: Potholes (where "Street Condition"
is the [Complaint Type] and "Potholes" is the [Descriptor];
for brevity here we will simply refer to as Potholes). The BP
approach only allocates nearly four times as much impact to
the Pothole factor versus TD (roughly 73,000 call impact versus
20,000 call impact, respectively). As illustrated in Figure 6,
the BP approach is much better able to surface this category’s
impact, while in the TD approach, this impact is very blunted
by the "upstream" allocations of multiplicative weight to its
ancestors.

The qualitative analysis presented here is clearly not exhaus-
tive, but hopefully is suggestive of the added power of this
approach versus the greedy "Top-down" algorithm. That being
said, in a sense this analysis does not "do our approach justice",
in the sense that there is no off-the-shelf or automated way of
implementing even the greedy approach (to our knowledge).
In that sense, even the greedy approach would be a significant
improvement versus the status quo, as it would at least provide
an automated allocation solution (if not a precise one).

6 Conclusion
The demand for actionable business insights has never been
bigger, with the global market for business intelligence and
analytics software predicted to reach $14.5B annually by 2022

7

https://opendata.cityofnewyork.us/
https://opendata.cityofnewyork.us/

6.1 Applications REFERENCES

Figure 6: Comparison of the factor weight allocated to the
Pothole category by the two approaches (secondary axis). Over-
all pothole complaint count shown in gray (primary axis) for
context.

[18]. In addition, an estimated 2 to 4 million new human "data
translators" will be needed in the next decade to visualize and
interpret data patterns [10]. As the latter implies, a significant
portion of data analyst effort is still spent on manual pattern
identification techniques, à la "visual analytics".
In this work, we have presented the motivation and theory

for FactorPrism, a novel methodology to solve a problem tradi-
tionally approached through such manual methods, but yet to
be approached algorithmically. We have demonstrated that this
task of automatic decomposition and factor attribution can be
solved automatically and efficiently by showing this problem is
equivalent to one of compressed sensing, namely an extension
of basis pursuit. Finally, we have shown that this algorithm
recovers satisfactory results in toy and real world cases. This
approach has immediate practical applications, some of which
are outlined below.

6.1 Applications
The use case alluded to throughout this paper - decomposition
of macro- and micro- sales trends for descriptive analytics and
business intelligence - is perhaps the most obvious. Potential
clients for this use case include but are not limited to large
retailers (online and brick-and-mortar), manufacturers with
audit data and/or direct sales, and other intermediaries (e.g.
pharmacy benefit managers).

The NYC 311 example alludes to a second class of use cases,
where transaction counts are the unit of interest, again in terms
of descriptive statistics. These could include public services,
as illustrated here, or other operational situations, such as call
centers, logistics carriers, etc.

We have yet to explore use cases in forecasting, but they do
suggest themselves. Once the trends are decomposed using the
method alluded to here, trends can be built on the decomposed
factors, which, when combined, could potentially lead to more
accurate overall forecasts than prior art. Clients for this use
case include those previously mentioned, as well as financial
forecasting (e.g. asset price forecasting).

6.2 Further Research
The most obvious theoretical future direction for research is
to prove that FactorPrism is the best unbiased estimator in
recovering these causes (e.g. vis a vis the accuracy function in
19).

Potential other avenues for research may look to more finely
tune the algorithm in specific cases to control for noise. Given
the closeness to basis pursuit, extensions of basis pursuit denois-
ing (i.e. LASSO [20]), suggest themselves here and may possibly
be beneficial.
Given the implicit emphasis on interpretability of solutions

to this problem, it would be fruitful to prove their apparent
uniqueness. We suspect such can be done by following the
techniques of [21].

Along perhaps similar lines, fine-tailored solving techniques
for this specific LP (Equation 16) may potentially lead to in-
creases in performance and solution time.

A potential limitation of the algorithm is that it can only as-
sign weights to pre-specified categories, and thus can only iden-
tify the most important factors if they are in the pre-specified
set of labels. A further direction may be looking to implement
this algorithm in cases where at least some of the categories are
not known a priori. For instance, for continuous variables (e.g.
age), we might seek to find the groupings of ages that would
lead to the most parsimonious result. For example, one could
imagine an algorithm that searches through these delineations,
looking for an "optimum" (perhaps with lowest objective value)
in a potentially efficient way.

Acknowledgements
The author would like to thank the members of the Cornell Op-
erations Research Department for their continuous inspiration
and friendship over the years, especially David Shmoys and
Huseyin Topaloglu. Additionally, thanks to Eran Toch, Gerry
Feigin, Paul Raff, Todd Schiller, Rishab Guha, Eli Goldberg, and
Gui Woolston for their helpful comments on this paper. Thanks
to Byron Hing, Pete Rimshnick, and Ilya Sukhar for their advice
with software creation, and Ray Dara and Mike Dill for their
business partnership. Finally, thanks to the author’s family,
especially his wife Nicole, for their perpetual encouragement
and support.

References
[1] Elena Barton, Basad Al-Sarray, Stephane Chretien, and Kavya Jagan, De-

composition of dynamical signals into jumps, oscillatory patterns, and possi-
ble outliers, Mathematics 6 (2018), no. 7, 124.

[2] T Tony Cai and Lie Wang, Orthogonal matching pursuit for sparse signal
recovery with noise, IEEE Transactions on Information theory 57 (2011),
no. 7, 4680–4688.

[3] EJ Candes and T Tao, Near-optimal signal recovery from random projections
and universal encoding strategies. submitted to ieee trans, Inform. Theory,
November (2004).

[4] Scott Shaobing Chen and David L Donoho, Application of basis pursuit in
spectrum estimation, Proceedings of the 1998 ieee international conference
on acoustics, speech and signal processing, icassp’98 (cat. no. 98ch36181),
1998, pp. 1865–1868.

8

A JUSTIFICATION FOR WEIGHTING

[5] Scott Shaobing Chen, David L Donoho, and Michael A Saunders, Atomic
decomposition by basis pursuit, SIAM review 43 (2001), no. 1, 129–159.

[6] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Ter-
penning, Stl: A seasonal-trend decomposition, Journal of official statistics 6
(1990), no. 1, 3–73.

[7] Estela Bee Dagum and Silvia Bianconcini, Seasonal adjustment methods
and real time trend-cycle estimation, Springer, 2016.

[8] David L Donoho, Compressed sensing, IEEE Transactions on information
theory 52 (2006), no. 4, 1289–1306.

[9] Andrew Gelman and Jennifer Hill, Data analysis using regression and
multilevel/hierarchical models, Cambridge university press, 2006.

[10] Nicolaus Henke et al., The age of analytics: competing in a data-driven
world, McKinsey Global Institute (2016).

[11] Rob J Hyndman and George Athanasopoulos, Forecasting: principles and
practice, OTexts, 2018.

[12] Dirk A Lorenz, Marc E Pfetsch, and Andreas M Tillmann, Solving basis pur-
suit: Heuristic optimality check and solver comparison, ACM Transactions
on Mathematical Software (TOMS) 41 (2015), no. 2, 1–29.

[13] Long Ma, Xiao Han, Zhesi Shen, Wen-Xu Wang, and Zengru Di, Efficient
reconstruction of heterogeneous networks from time series via compressed
sensing, PloS one 10 (2015), no. 11, e0142837.

[14] Hans D Mittelmann, Latest benchmarks of optimization software, Informs
annual meeting. houston, tx, 2017.

[15] City of New York, Getting started with open data. Accessed: 2021-01-14.
[16] Hal Rankard, Is there a geometric analog of absolute value?.
[17] William F Sharpe, Portfolio theory and capital markets, McGraw-Hill Col-

lege, 1970.
[18] Sebastian Stan, Data analytics market in 2020: Trends, forecasts, and chal-

lenges, Cognetik, 2020.
[19] Marina Theodosiou, Forecasting monthly and quarterly time series using

stl decomposition, International Journal of Forecasting 27 (2011), no. 4,
1178–1195.

[20] Robert Tibshirani, Regression shrinkage and selection via the lasso, Journal
of the Royal Statistical Society: Series B (Methodological) 58 (1996), no. 1,
267–288.

[21] Ryan J Tibshirani et al., The lasso problem and uniqueness, Electronic
Journal of statistics 7 (2013), 1456–1490.

[22] Xiaozhe Wang, Kate Smith, and Rob Hyndman, Characteristic based clus-
tering for time series data, Data mining and knowledge Discovery 13 (2006),
no. 3, 335–364.

[23] Shanika L Wickramasuriya, George Athanasopoulos, and Rob J Hyndman,
Optimal forecast reconciliation for hierarchical and grouped time series
through trace minimization, Journal of the American Statistical Association
114 (2019), no. 526, 804–819.

A Justification for Weighting
In this section we provide non-rigorous theoretical justification
as to why we chose Wi as the maximum of all microcategories
data Yj,0 where i influences j as our weight factor (as in Equa-
tion 11).
We assert that the weighting factors Wi ∈ W should have

the following properties:

1. Microcategory weights are equal to starting data.
Each microcategory j has weight equal to its own starting
data Yj,0.

2. Weights generalize to equally-weighted case. If themi-
crocategory descendants j ∈ Qi of any non-microcategory
i have equal weight Wj = w, thenWi = w.

3. Weights imply "single-impact axiom". The weights
are set that if only one microcategory descendant k of
i has any data change (i.e. k is the only member of Qi

such that Yk,t − Yk,0 ̸= 0), then all gj except for gk (in-
cluding gi) will be optimized at 0 (and gk will be opti-
mized at log(Yk,t) − log(Yk,0)). (We refer to this algo-
rithm behavior as the single-impact axiom). This implies
thatWi ≥ maxj∈Qi

Wj .

Lemma 1 follows directly.

Lemma 1 Wi = maxj∈Qi
Yj,0 satisfies Properties 1-3.

We also claim Lemma 2 without proof.

Lemma 2 Wi = maxj∈Qi Yj,0 is the only continuous function
satisfying Properties 1-3.

A.1 Justification of Property 3

Now, we justify Property 3, specifically how the "single-impact
axiom" of the algorithm impliesWi ≥ maxj∈Qi

Wj . We should
mention that while it is difficult to say a great deal a priori about
the desired optimal solution to our algorithm, we can say for
sure that we want this axiom, as described, to hold, and thus
the weights to be designed to guarantee this.

Suppose we were in the "single-impact" scenario as described
in Property 3 and illustrated in Figure 7. We claim that this
solution being optimal impliesWi ≥ maxj∈Qi

Wj , where i is
the ancestor category as shown.

0

x

x

0

0

· · · 0

0

Figure 7: Desired solutions gi (root) and gj for j ∈ Qi when
only one microcategory (j = 1) has any data change x. Note
ordering is arbitrary and for illustration.

"Proof." Let j = 1 refer to the microcategory with a nonzero
change x, and assume x is positive for argument (the logic is
symmetric if negative and ordering is arbitrary).

Since this solution is optimal, any δ increase in gi and corre-
sponding decrease in gj for j ∈ Qi will increase (or keep same)
the objective function. We note that all absolute values |g| will
increase by δ except |g1|, which will decrease by δ. Thus our
optimality condition implies that

δWi +

n∑
j=2

δWj − δW1 ≥ 0 (20)

and thus

Wi +

n∑
j=2

Wj ≥ W1 (21)

9

A.1 Justification of Property 3 A JUSTIFICATION FOR WEIGHTING

For this inequality to hold in all cases, it must hold in the
particular case when W1 = maxj∈Qi

Wj . Thus

Wi +

n∑
j=2

Wj ≥ max
j∈Qi

Wj (22)

Since
∑n

j=2 Wj can be arbitrarily small, we thus must have

Wi ≥ max
j∈Qi

Wj (23)

which was our claim.

10

	Introduction
	Related Work
	Motivation
	Inputs and Definitions
	Assignment Motivation
	Sparsity

	Optimization
	Equally-weighted Case
	Weighted Case
	Greedy Assignments
	Ultimate Formulation
	Descriptive Analysis
	Static Decomposition
	Implementation Considerations

	Empirical Results
	Simulation Results
	Real World Example: NYC 311 Data

	Conclusion
	Applications
	Further Research

	Justification for Weighting
	Justification of Property 3

